
Robust Object Detection Via Soft Cascade

Lubomir Bourdev
lbourdev@adobe.com

Jonathan Brandt
jbrandt@adobe.com

Office of Technology, Adobe Systems Inc., 345 Park Avenue, San Jose, CA 95110

Abstract

We describe a method for training object detectors using
a generalization of the cascade architecture, which results
in a detection rate and speed comparable to that of the best
published detectors while allowing for easier training and a
detector with fewer features. In addition, the method allows
for quickly calibrating the detector for a target detection
rate, false positive rate or speed. One important advantage
of our method is that it enables systematic exploration of
theROC Surface, which characterizes the trade-off between
accuracy and speed for a given classifier.

1. Introduction
The trade-off between accuracy and speed is a central as-
pect of the problem of object detection in images. Since the
object can appear potentially anywhere in the image, the
classification function must be applied at a comprehensive
set of positions and scales. Furthermore, accurate classi-
fication is complex and slow due to the vast variation of
appearances of the object, and even greater variation of the
non-object class.

A common way to reduce the computational burden of
evaluating a complex classifier over an entire image is to de-
compose the classifier into a linear sequence, orcascade, of
sub-classifiers. For the problem of face detection, each sub-
classifier, or stage, is a binary classification function that is
trained to reject a significant fraction of the non-faces, while
allowing almost all the faces to pass to the next stage. Each
successive stage is trained based on the non-faces that pass
all prior stages. The computational speed-up is achieved
by weeding out the vast majority of non-faces in the early
stages which are relatively simple to evaluate.

The cascade is not a new idea. It is in essence a triage
strategy, and has appeared in various forms dating back to
the 1970s, as was recently pointed out by Schneiderman [6].
It is often used implicitly by prefiltering obvious non-faces
based on various heuristic criteria, such as the presence of
skin tone [7] or intensity variance [10]. Féraud et al [1] pro-
pose a four stage cascade that includes a motion filter, color
filter, a neural network and a PCA-based classifier. Heisele

Figure 1:Examples of difficult face examples detected by a Soft
Cascade trained for frontal upright faces.

et al [2] propose a cascade of coarse-to-fine SVM-based
classifiers. Li et al [3] propose a three level cascade with
Haar-like features for a multi-view face detection system.
Viola and Jones [10] propose a cascade-based face detector
with stages consisting of fast Haar-like block filters. Each of
the stages of the Viola-Jones cascade is trained using a vari-
ation of AdaBoost [4]. Subsequent work has refined and
extended the Viola-Jones detector [3, 6, 11, 12, 8], while
retaining the fundamental structure of the cascade.

While the cascade structure has been shown to be effec-
tive at speeding up the detection process, it has several dis-
advantages that we address in this paper. Fundamentally,
the cascade has the flaw that most of the information ob-
tained from evaluating a given stage is discarded as it passes
to the next stage. Consequently, the decision to accept or re-
ject an instance at a given stage does not take into account
how well the instance performed in the prior stages. This
can result in a brittle classifier since a face can be misclas-
sified just because it barely fails to satisfy the criteria of a
single stage, and conversely for a non-face.

A second disadvantage of the cascade structure is the se-
vere requirement it imposes on training each of the indi-
vidual stages. In particular, a positive classification must
pass every stage, which implies that the final detection rate
is the product of the detection rates of all stages. For a10

mailto:lbourdev@adobe.com�
mailto:jbrandt@adobe.com�

stage cascade to achieve a detection rate of90% at false
positive rate of10−6, each of its stages must be able to pre-
serve close to99% of the faces, while eliminating on aver-
age more than25% of the non-faces. This may be trivial
for the initial stages, but for later stages it becomes a very
difficult task, which results in large stages that are difficult
to train and time-consuming to evaluate.

A third disadvantage of the cascade structure is that the
training parameters, namely the target detection and false
positive rates at each given stage, provide at best only indi-
rect control over the execution speed of the resulting clas-
sifier. Therefore, in order to explore the trade-off between
speed and accuracy for a given detection problem, the cas-
cade must be repeatedly retrained with varying training pa-
rameters. This is a serious problem since each training cycle
can take weeks of computation to complete.

A fourth disadvantage of the traditional cascade is that
there is no obvious way to pick optimal values for its free
parameters. The number of stages, the ordering, the target
detection rate and false positive rate at each stage all affect
the execution speed for a given target accuracy. Sun et al
[8] propose a method for picking values for some of these
parameters that optimize the detection accuracy. However,
it is not clear how to set the parameters to optimize speed at
a given target accuracy.

Xiao et al [12] propose the Boosting Chain which ad-
dresses the first disadvantage of the cascade, that is, that
subsequent stages are unable to make use of information
obtained in evaluating prior stages. Specifically, one of the
improvements they propose is propagating the cumulative
sum from prior stages as input to the next stage and as a
result are able to show an accuracy improvement over [10].

The Boosting Chain, as well as the traditional cascade,
suffer from a fifth disadvantage — to reduce the false posi-
tive rate one must train new stages, which irreversibly re-
duces the detection rate. Lastly, traditional cascades are
not suitable when the variability of positive examples is too
high. Multi-view detection systems, for example, typically
require training a distinct cascade for each viewpoint and
using a decision tree to direct the search to the appropriate
one.

In this paper we propose a new structure, the Soft Cas-
cade, which retains the desirable execution efficiency of the
cascade while addressing each of the problems described
above. Our experimental results indicate that the Soft Cas-
cade structure produces classifiers with speed comparable
to that of the best published detectors while significantly
improving the detector accuracy. The basic approach con-
sists of two main ideas: (1) to generalize each stage to be a
scalar-valued, rather than binary-valued, decision function
proportional to how well the given instance passes the stage
and to the relative importance of the stage; and (2) gener-
alize the decision function that determines whether or not a

given instance passes a given stage to depend on the values
of each of the prior stages rather than just the value of the
stage under consideration.

The Soft Cascade is similar to the Boosting Chain [12]
in that it allows for monotonic accumulation of information
as the classifier is evaluated. However, the Soft Cascade al-
lows us to quickly explore the speed/accuracy trade-off for
a given classifier without having to retrain it. This is in con-
trast with the conventional cascade and with the Boosting
Chain, wherein training parameters that must be set prior to
training dictate the ultimate speed of the classifier.

By exploiting the capability of the Soft Cascade to con-
tinuously trade-off speed versus accuracy we are able to
generate a Receiver Operating Characteristic Surface (ROC
Surface) which represents the interdependency of detection
rate, false positive rate, and execution speed as a 3D sur-
face. We believe that the ROC Surface provides greater in-
sight into classifier performance than a simple ROC curve
or family of curves can provide.

2. Formulation of the Soft Cascade
In order to motivate the Soft Cascade, consider training a
face detector using AdaBoost and a set of Haar-like fea-
tures as weak learners as in Viola-Jones [10]. However,
rather than training a sequence of consecutive stages, con-
sider training a single, potentially very long stage consisting
of T features. The resulting classifier is of the form:

H(x) =
∑

t=1,...,T

ct(x)

wherect(x) = αtht(x) are the set of thresholded Haar-
based classifiers selected during AdaBoost training scaled
by the associated weights.

Let Ht(x) =
∑

i=1,...,t ci(x) be the partial sum up to
and including thet-th feature, or the response of sample
x at stept. The values ofHt(x) as a function oft for
a fixed samplex constitute asample trace. Figure2 de-
picts the traces for a collection of face and non-face sam-
ples on a classifier consisting of approximately2500 fea-
tures. Clearly, the traces corresponding to the faces steadily
separate from the non-faces as the evaluation progresses,
which demonstrates the effectiveness of the learning proce-
dure. Also, it is evident from the traces that there is signif-
icant statistical dependency among the features. In partic-
ular, the sample traces progress in a fairly orderly manner,
thereby enabling an early decision as to whether the sample
is a face or not.

Within this context, the conventional cascade structure
requires finding the smallestt and thresholdrt such that the
fraction of faces with trace values greater thanrt is greater
than the target detection rate and the fraction of non-faces
with trace values greater thanrt is less than the target false

Figure 2:Sample traces

Missed

detection

Rejection

trace

False

positive

Rejected

traces

Faces

Non-faces

Rejection trace

Figure 3:Sample evaluation using Soft Cascade

positive rate. New weak learners are trained until such con-
ditions are met. The cumulative sum for a given instance is
only computed to determine if it exceedsrt and is thereafter
discarded.

Alternatively, consider setting a thresholdrt for each of
theT features. After each feature evaluation, the cumula-
tive sumHt(x) is compared with therejection thresholdrt.
If the cumulative sum is less than the rejection threshold,
then the sample is rejected as a non-face; otherwise evalu-
ation continues. All samples which are fully evaluated and
exceed the final rejection thresholdrT are accepted as faces.
The rejection thresholds define therejection trace, as shown
of Figure 3. Figure 4 shows a pseudo-code specification of
this procedure.

In general, the Soft Cascade framework is defined by se-
lecting a stage output functionct(x), a scalar-valued func-
tion proportional to how well the given instancex passed
staget and to the relative importance of that stage and a re-
jection functionRt(c1(x) . . . ct(x)) after each staget. The
rejection function determines whether to terminate evalua-
tion or to let it continue to staget + 1.

The first advantage of the proposed method is that it does
not discard information prematurely, thus making better re-
jection decisions. The second advantage is that it does not
impose a burden on each stage to preserve nearly all faces
— a face may fail one or more stages and still be correctly
classified. As a consequence, stages can be small, easy to

bool sampleIsFace(x)
d ← 0
for t = 1 . . . T

d ← d + ct(x)
if d < rt return false

return true

Figure 4: The Soft Cascade algorithm with thresholded sum as
the rejection function

train, and fast to evaluate.
We demonstrate the method by training a face detector

via a variation of AdaBoost using thresholded Haar-like
block filters as in [10]. In terms of the Soft Cascade, the
stage output functions are the weighted features selected by
AdaBoost and the rejection function is the thresholded cu-
mulative sum of the stage output functions. The justifica-
tion for the above choices is as follows: AdaBoost has been
shown as a very effective learning method with good gen-
eralization performance [5]. The integral filters are among
the fastest possible effective weak learners. The weights
that AdaBoost assigns to each weak learner correspond to
its importance and our choice of sum of weights as the re-
jection function is also based on AdaBoost’s sum.

The next section presents a training procedure for deter-
mining the stage output functions. The subsequent section
presents a method to reorder the stages and determine the
rejection functions. These latter two steps comprise Soft
Cascadecalibration.

3. Soft Cascade Stage Training
The goal of this section is to determine a set of weak clas-
sifiers (our stage output functionsct) that, when added to-
gether, result in a strong classifier. The basic AdaBoost al-
gorithm would be perfect for this goal, except that we do not
have a good way of obtaining representative samples of the
space of non-faces. Accurate representation of the space of
non-faces would require impractically many negative sam-
ples. The common strategy to address this problem is to
use bootstrapping — to start training with a random set of
negative samples and keep adding new ones during training
that the classifier misclassifies. Table 1 presents a modified
AdaBoost algorithm that incorporates bootstrapping.

In Step 1, for performance reasons, we do not search ex-
haustively for all possible features to find an error minimiz-
ing one, but sample only a random subset of them and do a
spatially localized search at each random sample to find the
corresponding local error minimum. We found this strategy
to be very effective in finding a feature very close to the
optimal while sampling only a few percent of the features.
Step 2 follows the AdaBoost algorithm as described in [10].
It finds a weak classifier that minimizes the weighted er-
ror over the training set. We introduce bootstrapped non-

Input:
• a,b is the number of negative and positive samples,

respectively.
• Training samples(x1, y1), . . . , (xa+b, ya+b) where

yi = 0, 1 for negative and positive samples, respec-
tively.

• T is the target number of weak classifiers.
Initialize:
• w0,i ← 1

2a , 1
2b for yi = 0, 1 respectively.

For t = 1, . . . T :
1. For each featurej train a classifierhj restricted to

using the feature. The error of the classifier is de-
fined asεj =

∑
i wi|hj(xi)− yi|

2. Choose the classifierht with the minimum errorεt.
Setβt = εt

1−εt
, αt = − log βt, andct = αtht.

3. Add K bootstrapped negative samples and scale
back the weights of the existing negative samples
to keep their sum constant:
3.1. ∀i, yi = 0 : wt−1,i ← wt−1,i

a
a+K

3.2. Fork = 1 . . . K, add samples(xN+k, 0) with
wt,N+k = 1

2a such that
t∑

j=1

ct(xN+k) ≥ 1
2

t∑

j=1

αj .

3.3. a ← a + K.

4. Optionally remove weak features.
5. Decrease the weights of all samples correctly clas-

sified byhj as in [10]:

∀i, hj(xi) = yi : wt−1,i ← βtwt−1,i

6. Normalize the weights:wt,i = wt−1,iP
j wt−1,j

Output:
• The stage output functionsct.

Table 1:The algorithm to determine stage output functions

faces in Step 3 we addK non-face samples that the classi-
fier misclassifies. Although AdaBoost tends to correct itself
over time, we found that training is improved if we keep
the relative weight distribution between positive and nega-
tive samples as we introduce new samples (Step 3.1). The
numberK of new non-faces to add at each training cycle af-
fects the focus of AdaBoost on improving the detection rate
vs. the false positive rate. IfK is too large, AdaBoost will
not be able to catch up and the error rate over the negative
training set will be high. Alternatively, ifK is too small,
training a classifier with good false positive rate would re-
quire too many weak classifiers. We believe a good strategy
is to adjustK at each step to keep the error rate over the
bootstrapped non-faces constant.

Introducing bootstrapped negative samples during train-

ing changes the terms of the problem as we go along. There-
fore features that AdaBoost deemed appropriate earlier may
prove to be suboptimal after introducing new negative sam-
ples. Such features are removed in Step 4. This gives further
justification to not spending too much effort trying to find
the optimal feature in Step 2 but just a very good one; the
optimal feature at the current step may be suboptimal once
new bootstrapped non-faces are introduced.

Li et al [3] propose a backtrack-based strategy for weed-
ing out weak features called FloatBoost, which could be uti-
lized in Step 4. We do not use it because of its performance
when thousands of features are involved and also because,
as discussed above, working hard to remove optimally weak
features is not necessary, since the problem changes as we
go along. We chose a simpler strategy: remove features
whose removal results in a decrease in the error rate.

4. Soft Cascade Calibration
In this section we present an algorithm that, given a tar-
get detection rateD and target execution timeS determines
nearly optimal values to the parameters of the Soft Cascade
(Figure4) that minimize the false positive rate. We call the
process of determining these parametersclassifier calibra-
tion.

4.1. ROC surface
Each calibrated classifier is associated with a point in the
space obtained by extending the plane of the ROC curve
along an axis corresponding to expected evaluation cost.
The set of points in this space that are spanned by all possi-
ble calibrations of a given classifier constitute its operating
domain. For any fixed detection rate and false positive rate
in the operating domain, there is a unique point in the op-
erating domain of minimum evaluation cost. The set of all
such points constitutes the ROC surface for the classifier.
(Note that the familiar ROC curve forms a portion of the
boundary of the ROC surface.) Any calibration correspond-
ing to a point not on the ROC surface is suboptimal since
in this case there exists another equally accurate, yet faster,
calibration that is on the ROC surface.

The calibration algorithm determines a suitable order-
ing of the stages and the rejection thresholdsrt after each
stage. The ordering of the stages defines the sample traces,
whereas our choice for rejection thresholds defines the re-
jection trace (Figure 3). Intuitively, we want to pick more
discriminating stages and stages that complement each
other closer to the beginning so as to maximize the sepa-
ration between the positive and negative samples. (While
the first few stages picked by AdaBoost are very discrimi-
nating, the order of the remaining is typically suboptimal.)

As for the rejection trace, if we use larger rejection
thresholds and have a higher rejection trace, more of the

positive samples will cross it and thus we will get lower de-
tection rate but also lower false positive rate. Note also that
the “area” of traces above the rejection threshold defines the
speed of the detector. If the rejection trace increases steeply
initially, it will cross and terminate most of the traces early
on and produce a fast detector, which will also not be very
accurate because the positive and negative samples are not
well separated in the initial stages. Alternatively, if our re-
jection trace is initially conservative and rises only in the
later stages, we will obtain a slower but more accurate de-
tector. The most conservative rejection trace that is zero
everywhere except at the last stage corresponds to the un-
calibrated detector described in the previous section.

Let vt ≥ 0 be the minimum fraction of faces that we can
miss at thet-th stage. We call the vectorv = (v1, . . . , vT)
the rejection distribution vector. The vectorv fully defines
the position of the detector on the ROC surface: the sum
of its elements is1 − D whereD is the target detection
rate, while its distribution controls the trade-off between ex-
pected execution time and false positive rate (as outlined
above).

In Section4.2 we describe an algorithm that projects a
given rejection distribution vector onto a point on the ROC
surface (i.e. determines its expected false positive rate and
execution time). It also determines the Soft Cascade pa-
rameters associated with that point. In Section 4.3 we de-
scribe a method that uses that ROC surface projection al-
gorithm to search for the rejection distribution vector corre-
sponding to the minimum false positive rate for a given de-
tection rate and execution time and outputs its correspond-
ing Soft Cascade parameters.

4.2. ROC Surface projection algorithm
In the following discussion, for a given predicatex, let
pred(x) be1 if x is true and0 otherwise.

Given a particularv, the calibration algorithm described
in Table 2 reorders the stages and sets the rejection thresh-
old for each stage. The calibration algorithm requires a set
of positive and negative training samples which are kept dis-
tinct from the training set used to train the stages.

The algorithm consists ofT cycles. In each cyclet we
select the stage output function that will occupy thet-th
place in the final ordering and we also select its correspond-
ing rejection thresholdrt. Throughout the algorithm we
keep track of the fraction of facesp we can reject at the cur-
rent step. At each cycle we add to it the allowance we have
for the current cyclevt (Step 1) and we subtract the frac-
tion of faces actually removed in the current cycle (Step 5).
Sometimes we cannot consume our entire allowance in the
current cycle, in which case the remainder is carried over to
the next cycle. In Step 2 we select as the next stage output
function the one that if applied to the calibration samples
would result in the largest separation between the average

Input:
• Calibration samplesX = {(x1, y1) . . . (xN , yN)}

whereyi = 0, 1 for negative and positive samples,
respectively. Leta =

∑
(1− yi), b =

∑
yi be the

number of negative and positive calibration sam-
ples, respectively.

• v1 . . . vT is the rejection distribution vector.
• {C} is the set ofT stage output functionsct deter-

mined by the training algorithm (Table 1).
Initialize:
• The sample responsesd0,i ← 0.
• The face rejection fractionp ← 0.
• The expected execution timem ← 0.
• The number of negative samples used so farA ← a

For t = 1 . . . T :
1. p ← p + vt. at =

∑
(xi,yi)∈X(1 − yi). bt =∑

(xi,yi)∈X yi.

2. From the stages in{C} select the index of the stage
that maximizes the separation between the positive
and negative samples:

q(t) = arg max
j

�X
i

ft,i,jyi/bt−
X

i

ft,i,j(1−yi)/at

�
,

whereft,i,j = dt,i−1 + cj .

3. Update the sample traces:dt,i ← dt−1,i +cq(t)(xi).

4. Select the rejection threshold as the maximum one
that removes no more thanp fraction of the faces.
That is, let rt be the largest valuer for which∑

i pred(dt,i ≤ r)yi ≤ pb.

5. Update:
p ← p−∑

i pred(dt,i ≤ rt)yi/b.
X ← X − {(xi, yi) : dt,i < rt}.
C ← C − {cq(t)}.
m ← m + cost(cq(t))at.

6. SearchAt number of randomly drawn negative
samples until findingK bootstrapped ones:

6.1. For k = 1 . . . K add samples
(xN+k, 0) with response dt,N+k =∑t

j=1 cq(j)(xN+k) chosen such that

∀j ∈ {1 . . . t}, ∑j
m=1 cq(m)(xN+k) ≥ rj .

6.2. N ← N + K.

6.3. A ← A + At.

Output:
• The stage output functionscq(t) andrt.
• The expected false positive rateF = aT /A.
• The expected execution timeM = m/A.

Table 2: The algorithm to compute the rejection thresholds and
the ordering of stages

positive and the average negative sample response. We can
improve this rule by weighting the samples, that is, giving
higher weights to the harder positive and negative samples.
That improvement gives marginally better results but com-
plicates the formulas and slows down calibration. In Step 3
we update the traces of our calibration samples. It Step 4 we
choose the maximum threshold that removes no more than
the fractionp of the total number of faces we are allowed
to remove. By setting the threshold as high as possible, we
allow for removing the maximum possible number of neg-
ative samples. In Step 5 we update the fraction of faces we
are allowed to reject, remove from consideration the sam-
ples whose traces fall below the rejection threshold and re-
move the just chosen stage output function from the set to
choose from. In Step 6 we replenish the negative samples by
bootstrapping, choosing only ones whose traces stay above
the rejection trace. The larger the numberK of new sam-
ples we add, the more representative our data is, but also
the more time consuming the calibration becomes. In our
implementation we keep a target number of negative sam-
ples at each cycle that starts high and gradually decreases.
This approach gives us a reasonable trade-off between cali-
bration speed and generalization.

We discovered a reasonable alternative to the bootstrap-
ping Step 6 which results in a significantly faster calibration
with only a small degradation to the result. Once we train
a classifier (Table 1), we collect a representative set of non-
faces specific to it and we use that set on each calibration
run for that classifier instead of step 6. We collect repre-
sentative non-faces by doing a one-time sampling of a large
number (in the order of100 million) of random non-face
windows and ordering them in bins based on the classifier
response. The response distribution approaches a Gaussian
with a peak of0.44. We randomly discard the vast major-
ity of samples around the peak of the Gaussian but preserve
more of the ones in the upper tail, which correspond to the
harder non-faces. We also assign weights of the samples
in each bin based on the fraction of the number of sam-
ples falling into that bin that we end up keeping. Using this
method the algorithm on Table 2 takes less than five minutes
per run.

The calibration algorithm also outputs an estimated false
positive rateF and execution timeM . To compute the false
positive rate we simply divide the number of negative sam-
ples remaining at the end by the total numberA of negative
samples ever considered. We obtain the expected execution
time M by accumulating the number of negative samples
that pass each stage multiplied by the cost of the stage out-
put function (Step 5) and dividing the total by the number
of negative samples considered. In our implementation all
stages have relatively equal cost, so our cost function is 1.
Thus in our implementation the expected execution time is
represented as the average number of features evaluated per

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

stage index

re
je

ct
io

n
di

st
rib

ut
io

n
va

lu
e

Normalized exponential credit allocation curves

a = −3

a = −2

a = −1

a = 0

a = 1

a = 2

a = 3

Figure 5:Exponential family of rejection distribution vectors for
a 10 stage classifier

sample. We use only the negative samples when estimating
execution time because the fraction of positive samples in
real data is negligibly small.

4.3. Finding point close to the ideal ROC sur-
face

The algorithm in the previous section returns the execution
time and false positive rate for a particular rejection distri-
bution vectorv. In this section we use it to find the vector
v that minimizes the false positive rate given a target detec-
tion rateD and execution timeS. The elements of vector
v must be non-negative and their sum must equal1 −D to
satisfy the target detection rate requirement.

We have found empirically that the specific shape of the
vector is not as important as the distribution of its elements
towards the beginning (corresponding to faster classifiers)
or towards the end (corresponding to classifiers with better
false positive rate).

We use the exponential function family of the form:

vt =

{
ke−α(1−τ) whenα < 0
keατ whenα ≥ 0

whereτ = t/T , k normalizes the vector sum to satisfy the
target detection rate andα is the free parameter for the func-
tion family, as illustrated on Figure5. This particular func-
tion family tends to favor speed over accuracy whenα < 0
since most of its mass is towards the beginning stages, while
the opposite is true forα > 0.

For a given detection rateD and a value ofα, we con-
struct a vectorv and use it in the algorithm on Table 2 to
find the expected execution time of the corresponding clas-
sifier. To find a suitable calibration for a given detection rate
and speed, we do a one-dimensional search for the value of
α that gives us execution time equal to the target execution
time S. The result of calibration is the stage orderingq(t)
and the rejection thresholdsrt (provided by the algorithm
on Table 2) corresponding to that point on the ROC Sur-
face.

0 10 20 30 40 50 60 70 80
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

de
te

ct
io

n
ra

te

false positives

Soft Cascade
Viola/Jones [9]
Schneiderman [6]*
Xiao et al [12]
Li/Zhang [3]*
Sun et al [8]

Figure 6:Comparative detector performance on CMU+MIT face
set. (The (*) denotes data with 5 hand-drawn images removed.)

5. Results
A Soft Cascade face detector was trained as described in
Section 3. The training set consisted of approximately
17000 frontal upright face images resampled to a canoni-
cal 22 × 22 window size, as well as an initial set of32000
non-face images. New bootstrapped non-face images were
continually added during training. The final set of non-faces
included approximately220000. The result of training was
a detector consisting of4943 thresholded Haar features of
the same types as described in [10].

5.1. CMU+MIT Face Set Comparative Test
To get a sense of the accuracy of the classifier in the limit,
the uncalibrated version was tested against the CMU+MIT
data that consists of 130 images containing 507 faces. Fig-
ure6 depicts the ROC curve for the uncalibrated Soft Cas-
cade classifier when applied to the CMU+MIT face test set.
The curve was obtained by fully evaluating the classifier
and continuously varying the overall threshold. Compara-
ble curves are depicted for several other recently reported
cascade-based classifiers. Of particular interest is the im-
provement over [9] even though we employ fewer features
overall. (The detector in [9] is reported to employ 6061
features.) This improvement can be attributed directly to
the advantages of the Soft Cascade, since the two detec-
tors are otherwise very comparable. In addition, the Soft
Cascade shows an improvement over [12] despite the fact
that [12] utilizes several optimizations to eliminate redun-
dancy in the selected features. The Soft Cascade ROC per-
forms better than [3], although [3] also eliminates feature
redundancy through FloatBoost backtracking and employs
a much richer set of primitive features. The results reported
in [6] are comparable to our system. Nevertheless, a con-

0 10 20 30 40 50 60 70 80
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

de
te

ct
io

n
ra

te

false positives

Soft Cascade (37 Features)
Soft Cascade (25 Features)
Hard Cascade (37 Features)
Hard Cascade (38 Features)

Figure 7:Comparing ROC curves of the Soft Cascade for differ-
ent execution speeds on the CMU+MIT face set

ventional cascade is used in [6] and our conjecture is that
using the Soft Cascade could further improve the results.
(Note that both [3] and [6] report results based on a reduced
set with 5 images containing hand-drawn faces removed.)

Figure 7 explores ROC curves at constant-evaluation
times. By setting the rejection thresholds conservatively we
were able to obtain an average evaluation time of 37.1 fea-
tures with virtually no loss of accuracy over the full evalu-
ation. That plot demonstrates the effectiveness of the Soft
Cascade and further illustrates the steepness of the execu-
tion time dimension near the full evaluation limit. Figure7
also depicts the ROC for a hard cascade trained in the man-
ner described in [9] using the identical training set, feature
set and based on the same boosting algorithm as that of the
Soft Cascade. The performance disparity highlights the ad-
vantages of the Soft Cascade. Due to the high variation of
our training set, we were unable to obtain a hard cascade
that executes faster than about 37 features per window on
average.

To explore the learning power of our algorithm on a
harder classification problem, we successfully trained a
24x32 soft cascade using about 40000 frontal faces with
much wider variation of in-plane and out-of-plane rotations.
Figure1 shows examples of faces this classifier can find.

5.2. Exploring the ROC Surface

In this section we use the calibration algorithm to sample
the ROC surface, as shown on Figure8. The surface has
been approximated based on discrete data points which are
shown as dots in the figure. The vertical axis is the expected
evaluation time in terms of number of features and is pre-
sented in a logarithmic scale because of the range of times
is so great. The top edge of the surface approaches the full

Figure 8:The ROC surface for the Soft Cascade face detector

Figure 9:Overhead view of the ROC surface

evaluation ROC curve as can be seen more clearly in the
overhead view depicted in Figure9. Note that the maxi-
mally conservative calibrated classifier is still considerably
faster than the full classifier because it is able to reject all
negative sample traces that fall below the minimum positive
sample trace without affecting the detection rate.

6. Conclusion

We described a method for generalizing the cascade that
addresses problems with the traditional cascade structure,
namely, the unnecessary discarding of information at each
stage, as well as the burden imposed at each stage to retain
nearly all positive samples.

The proposed architecture consists of a single monolithic
classifier that is augmented with a rejection threshold func-
tion that is tested at each step of the classifier evaluation. We

introduced a continuous bootstrapping method that allows
for training the classifier against a representative sampling
of the non-faces. We introduced a method to calibrate the
classifier for a specific detection rate and execution time.

We have demonstrated that our system allows for creat-
ing faster and more accurate detectors that are also more
compact and therefore easier to train. In addition, the new
architecture effectively decouples the speed/accuracy trade-
off from training. Once a classifier is trained, we are able to
quickly calibrate it for a given point in the ROC surface.

Acknowledgements

We would like to thank Hailin Jin for his assistance in the
preparation of this manuscript, and Gregg Wilensky for his
helpful review.

References
[1] R. Féraud, O. Bernier, J. Viallet, and M. Collobert. A fast

and accurate face detector based on neural networks.IEEE
Trans. PAMI, 23(1), January 2001.

[2] B. Heisele, T. Serre, S. Prentice, and T. Poggio. Hierarchi-
cal classification and feature reduction for fast face detection
with support vector machines.Pattern Recog., 36, 2003.

[3] S. Li and Z. Zhang. Floatboost learning and statistical face
detection.IEEE Trans. PAMI, 26(9), September 2004.

[4] R. Schapire. The boosting approach to machine learning: An
overview. InMSRI Workshop on Nonlinear Estimation and
Classification, Berkeley, CA, 2001.

[5] R. Schapire, Y. Freund, P. Bartlett, and W.-S. Lee. Boosting
the margin: a new explanation for the effectiveness of voting
methods. InProc. 14th Int. Conf. Machine Learning, pages
322–330, 1997.

[6] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. InIEEE Conf. Computer Vision
and Pattern Recognition, 2004.

[7] H. Schneiderman and T. Kanade. Object detection using the
statistics of parts.Int. J. Computer Vision, 2002.

[8] J. Sun, J. Rehg, and A. Bobick. Automatic cascade training
with perturbation bias. InIEEE Conf. Computer Vision and
Pattern Recognition, 2004.

[9] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InProceedings IEEE Conf. on
Computer Vision and Pattern Recognition, 2001.

[10] P. Viola and M. Jones. Robust real-time object detection.
In IEEE ICCV Workshop on Statistical and Computational
Theories of Vision, 2001.

[11] J. Wu, J. Rehg, and M. Mullin. Learning a rare event detec-
tion cascade by direct feature selection. InNIPS, 2003.

[12] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning
for object detection. InICCV, pages 709–715, 2003.

